
TOO: Accelerating Loss Recovery by Taming On-O! Tra!ic
Pa"erns

Xu Yan, Tong Li∗

Renmin University of China

Bo Wu, Cheng Luo, Fuyu Wang
Tencent

Haiyang Wang
University of Minnesota Duluth

Ke Xu
Tsinghua University

ABSTRACT

As the ubiquitous phenomenon occurs in applications such as live

streaming and video conferencing, the on-o! tra"c pattern is re-

garded as a disadvantage for congestion control. However, we argue

that it can be transformed as an advantage for accelerating loss

recovery. In this paper, we report the design of TOO, a loss re-

covery acceleration mechanism that tames on-o! patterns for loss

duplicate reinjection without incurring non-trivial tra"c overhead.

CCS CONCEPTS

• Networks→ Transport protocols.

KEYWORDS

QUIC, loss recovery, application limitation

ACM Reference Format:

Xu Yan, Tong Li, BoWu, Cheng Luo, FuyuWang, HaiyangWang, and Ke Xu.

2023. TOO: Accelerating Loss Recovery by Taming On-O! Tra"c Patterns.

In ACM SIGCOMM 2023 Conference (ACM SIGCOMM ’23), September 10, 2023,

New York, NY, USA. ACM, New York, NY, USA, 3 pages. https://doi.org/10.

1145/3603269.3610841

1 INTRODUCTION

The ubiquitous packet loss is an essential factor a!ecting client-side

quality-of-experience (QoE) in live-streaming services, in which

the introduced head-of-line (HOL) blocking might result in long-

time video freezing. Most loss recovery schemes [1–6] fall into the

category of dual-side solutions that require modi#cation or upgrade

on both the server side and the client side. Unfortunately, they all

su!er from deployment issues, especially under Multi-Supplier

Strategy [7] that is applied by application providers (e.g., Tiktok

Live) to select better-performed CDN vendors.

In fact, most modern CDN vendors usually employ the automatic-

repeat-request (ARQ) paradigm [8, 9] to control loss tolerance as

the commercial solution, which retransmits data once any packet

is detected lost. However, from the deployment experience of real

product networks, we #nd that legacy ARQ-based loss recovery

is far from satisfactory. Our large-scale measurements show that

∗Tong Li is the corresponding author (tong.li@ruc.edu.cn).

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro#t or commercial advantage and that copies bear this notice and the full citation
on the #rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ACM SIGCOMM ’23, September 10, 2023, New York, NY, USA

© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0236-5/23/09.
https://doi.org/10.1145/3603269.3610841

Video/Audio Encoder

Live data Live data

Frame i

t0

Frame i+1

t1 t3 t4t2 t5

Sending packets Sending packets

time

On mode Off mode On mode

Figure 1: The sketch of on-o! mode in live streams.

21.7% and 8.5% of live streams su!er from at least 2 and 5 retrans-

missions for recovering some lost packet(s), respectively. Besides,

6.8% of resent losses become more deteriorated (e.g., detected lost

again) during recoveries, introducing additional 123.2ms (up to

279.3ms) recovery delay. Meanwhile, the performed measurements

also show that on-o! switching ubiquitously occurs in current live

streams. In particular, over 290- and 3100-time on-o! switching has

actually been experienced in 50% and 10% of live streams, which

results in 12s and 80s o!-mode duration, respectively. Note that it

is well-studied that the on-o! tra"c pattern is not conducive to

transmission control [10]. For example, as shown in Figure 1, during

the o!-mode, the sender stops pushing data into the network, and

the delivery rate might be underestimated. However, we argue that

the "wasted" o!-mode can be regarded as an essential opportunity

for accelerating loss recoveries.

In this paper, we present TOO, an enhanced loss recovery mech-

anism that only requires single-side modi#cation (i.e., CDN server).

TOO can transform the disadvantages of on-o! switching into an

advantage of loss tolerance controls under large-scale live stream-

ing. Basically, by applying TOO, tra"c senders will reinject loss

duplicates once entering o!-streaming mode. To better balance

the tradeo! between the introduced recovery bene#ts and the in-

curred tra"c overhead, TOOmodels the client-side waiting time for

any packet loss and constructs its activator, in which the proposed

loss reinjection will be activated only under deteriorated network

conditions (e.g., with higher deliver delays or larger loss rates).

We implement TOO upon QUIC and evaluate it via real-world de-

ployments of commercial live-streaming services, whose results

demonstrate the practicability and pro#tability of TOO (see §3).

2 DESIGN

2.1 The TOO Framework

As a sender-side extension, TOO enables tra"c senders to reinject

loss duplicates once entering the o!-streaming mode, as Figure 2

shows. In particular, each TOO sender establishes and maintains a

reinjection queue (Qrein) for each live stream, which only records

retransmitted packets that has already been resent but unacknowl-

edged yet by its receiver. To further mitigate the additional tra"c

ACM SIGCOMM ’23, September 10, 2023, New York, NY, USA Yan and Li et al.

!"#$$%&'(")*!"#+,-%,,%.+

!"#$$%&'(")*!"#+,-%,,%.+

/.,,'012/%&#!)'")%+3)&!%.+

4)+0)" 5)&)%6)"

!"#$%&#'(

)*$+,*"#$'+

-.*.*

!"#$%

&'()#'()

&'()#'()

&'()#'()

$*)#+*,

7%-)

8$$9-.0)
8+9-.0)

!

" #

Figure 2: The TOO Framework.

overhead, TOO enables the proposed duplicate reinjection on de-

mand, which is based on the designed activator that depicts client-

side waiting time for loss recovery. As a result, only the packet

losses under worse-performed connections will be reinjected.

2.2 Reinjection Queue

The TOO sender establishes andmaintains a reinjection queueQrein

for each live stream, in which all retransmitted packets are sorted

according to the timestamps of the latest retransmission/ reinjection.

In TOO, Qrein will be updated if any retransmitted packet has been

resent or acknowledged. Concretely, retransmitted packet will be

inserted to the end of Qrein if it has been retransmitted while being

removed if the retransmitted packet is successfully received by its

receiver. Besides, the TOO sender will move retransmitted packet

from the head to the end of Qrein when the proposed o!-mode

reinjection is performed.

2.3 Activator

To mitigate the signi#cant reinjection overhead, TOO can identify

the poor-performed live streaming, and then activate the proposed

recovery optimizations for these selected streams. Actually, a live

stream that su!ers from a higher loss rate and larger smooth RTT

(SRTT) can easily introduce unsatis#ed QoE, whose senders should

"turn on" the function of TOO-enabled loss reinjection in time.

To better discover the activation opportunity, we model the ex-

pected value of the receiver-side waiting time (Ewaiting) for any loss

recovery as follows:

Ewaiting = (1-r) · SRTT ·

=−1∑

:=0

(k+1) · rk (1)

where n denotes the maximum lost times of all packets, and r de-

notes the loss rate. In particular, Ewaiting will be updated periodically

(e.g., 2×SRTT). When entering a new cycle, the sender recomputes

Ewaiting based on the monitored transmission metrics (i.e., SRTT

and r) of the last cycle.

In this paper, when Ewaiting exceeds its threshold Θthres (i.e.,

Ewaiting > Θthres), the loss reinjection of TOO will be activated.

Note that Θthres actually tries to re&ect the time length of available

data cached at the video player. By setting a larger Θthres, TOO can

achieve targeted optimizations for those live streams, especially

under "imperfect" network status or conditions, e.g., with higher

transmission latency and more frequent packet losses.

3 EVALUATION

We integrate all the components described in Section 2 into Ten-

cent’s CDN servers (only sender-side upgrades) and implement

the TOO prototype based on the user-space QUIC protocol (with

Avg. 80th- 90th- 95th-
0

0.25

0.50

0.75

IR
T
 (

s
)

IRT (baseline)

IRT (TOO)

(a) Performance gain

Avg. 50th- 80th- 90th- 95th-
0

0.5

1.0

1.5

2

2.5

3.0

G
o
o
d
p
u
t

(M
b
p
s
)

Goodput (baseline)

Goodput (TOO)

Retran_ratio (TOO)

Retran_ratio (baseline)

0

10%

20%

30%

40%

50%

60%

R
e
tr

a
n
_
ra

ti
o

(b) Overhead

Figure 3: The performance of TOO.

the version of LSQUIC Q043) [11]. The experimental evaluation is

performed on commercial live-streaming services, where the CDN

proxy server that has deployed TOO prototype can pull and trans-

mit the requested live streaming from our live CDN to real-network

users. The CDN proxy servers all employ BBR (v1) [12] scheme as

the congestion controller. Note that Θthres and n in §2.3 are set as

50ms and 4, respectively, according to the production requirements.

To better depict the quality of loss recovery, we introduce a

metric called invalid-response-time (IRT), which is de#ned as

the duration from when any data is detected lost to when resending

a recovery packet that will be successfully received. IRT re&ects the

additional recovery time for data loss that ideally consumes only

one SRTT. Figure 3(a) records each stream’s average IRT value of

the lost data whose recovery requires two or more retransmissions.

We can learn the average IRT can be lowered by the ratio of 16.0%,

whose values are reduced from 119.3ms to 100.2ms, respectively.

In particular, the high-percentile (i.e., 95th-) IRT is even reduced

by 110ms. These results demonstrate that TOO is worthwhile for

optimizing the timeliness of loss recovery. As for the incurred cost,

Figure 3(b) shows TOO makes the average goodput to deteriorate

only with a ratio of 2.4% (from 974.3Kbps to 951.1Kbps). Besides,

only 1.9% of redundancy (retran_ratio) is additionally introduced,

on average, while only 10% of streams require an extra 6.5% of

retran_ratio for their loss recoveries.

4 CONCLUSION

This paper proposes an enhanced recovery framework named TOO

that enables senders to optimize the timeliness of loss recovery

by reinjecting loss duplicates once entering control-unfriendly o!-

streamingmode. The real-world experiments demonstrate that TOO

can e!ectively accelerate loss recovery of live streaming without

incurring unbearable overhead.

However, our real-world deployment experience further reveals

that the pre-con#gured and #xed transmission (e.g., recovery) policy

may not well adapt to network dynamics in some cases. As future

work, we are trying to design an online learning-based scheduler

to adaptively determine the thresholds of both reinjection times for

each data in Qrein and the expected waiting time Ewaiting for the

client side, which can also better balance the tradeo! between the

loss recovery bene#ts and the incurred reinjection overhead.

ACKNOWLEDGMENTS

This work is supported by the fund from Tencent, the fund for

building world-class universities (disciplines) of Renmin Univer-

sity of China, the NSFC Projects (No. 62202473 and No. 61932016),

the China National Funds for Distinguished Young Scientists (No.

61825204), and the Beijing Outstanding Young Scientist Program

(No. BJJWZYJH01201910003011).

TOO: Accelerating Loss Recovery by Taming On-O! Tra!ic Pa"erns ACM SIGCOMM ’23, September 10, 2023, New York, NY, USA

REFERENCES
[1] Mirko Palmer, Malte Appel, Kevin Spiteri, Balakrishnan Chandrasekaran, Anja

Feldmann, and Ramesh K Sitaraman. VOXEL: Cross-layer optimization for video
streaming with imperfect transmission. In ACM CoNext, pages 359–374, 2021.

[2] Zhilong Zheng, Yunfei Ma, Yanmei Liu, Furong Yang, Zhenyu Li, Yuanbo Zhang,
Jiuhai Zhang, Wei Shi, Wentao Chen, Ding Li, et al. Xlink: Qoe-driven multi-path
quic transport in large-scale video services. In ACM SIGCOMM, 2021.

[3] Chao Zhou, Wenjun Wu, Dan Yang, Tianchi Huang, Liang Guo, and Bing Yu.
Deadline and priority-aware congestion control for delay-sensitive multimedia
streaming. In ACM MM, pages 4740–4744, 2021.

[4] Michael Rudow, Francis Y. Yan, Abhishek Kumar, Ganesh Ananthanarayanan,
Martin Ellis, and K.V. Rashmi. Tambur: E"cient loss recovery for videoconfer-
encing via streaming codes. In USENIX NSDI, pages 953–971, 2023.

[5] Tong Li, Kai Zheng, Ke Xu, Rahul Arvind Jadhav, Tao Xiong, Keith Winstein, and
Kun Tan. Tack: Improving wireless transport performance by taming acknowl-
edgments. In ACM SIGCOMM, pages 15–30, 2020.

[6] Tong Li, Kai Zheng, Ke Xu, Rahul Arvind Jadhav, Tao Xiong, Keith Winstein,
and Kun Tan. Revisiting acknowledgment mechanism for transport control:
Modeling, analysis, and implementation. IEEE/ACM TON, 29(6):2678–2692, 2021.

[7] Yasemin Arda and Jean-Claude Hennet. Inventory control in a multi-supplier
system. International Journal of Production Economics, 104(2):249–259, 2006.

[8] D BertsekasandR. Gallager, data networks. Prentice-Hall, 1(99):2, 1992.
[9] Hui Xie and Li Tong. Revisiting loss recovery for high-speed transmission. In

IEEE WCNC, pages 1–6, 2022.
[10] Theophilus Benson, Ashok Anand, Aditya Akella, and Ming Zhang. Understand-

ing data center tra"c characteristics. ACM SIGCOMM Computer Communication
Review, 40(1):92–99, 2010.

[11] LiteSpeed Tech. LiteSpeed QUIC and HTTP/3 Library. https://github.com/
litespeedtech/lsquic.

[12] Neal Cardwell, Yuchung Cheng, C Stephen Gunn, Soheil Hassas Yeganeh, and
Van Jacobson. BBR: congestion-based congestion control. Communications of
the ACM, 60(2):58–66, 2017.

